MATERIAL DATASHEET | GALLIUM OXIDE SUBSTRATES AND EPI-LAYERS

Gallium oxide (GaO) substrates and epi-layers

Over the past decade, beta-gallium oxide (β -Ga₂O₃) has emerged as a promising material for next-generation power electronics. Due to its wide band-gap properties, ease of n-type doping corresponding to a widely tunable conductivity, and high breakdown strength, devices made from β -Ga₂O₃ are ideal for power conversion applications, RF technology / wireless communication, and space applications.

We made significant advancements in epitaxy techno-

logies for growing device-level β -Ga₂O₃ layer with low defect density, high mobility, and high surface quality via MOVPE (Metal Organic Vapor Phase Epitaxy). Highquality epi-layers are available with wide-range thickness and doping concentration as specified. Our epitaxy process is compatible with the β -Ga²O³ crystalline orientations (100) 4°off and (010) and has the potential for heteroepitaxy on foreign substrates, including Si, SiC, GaN... etc.

ADVANTAGES

- Wide bandgap (4.5-4.9 eV)
- High critical field strength (8 MV/cm)
- Low-cost native substrate availability
- High thermal stability

APPLICATIONS | TECHNOLOGIES

- Detectors and Sensors
- High-power radio frequency (RF) devices
- High-power devices
- Vertical devices
- Lateral devices

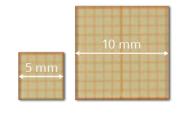
PATENTS

 Ta-Shun Chou, Saud Bin Anooz, Andreas Popp, Walter Haeckl: Method for growing a gallium oxide layer on a substrate and semiconductor wafer; EP22194558

SPECIFICATIONS

General bulk properties

Density	5.95 [g/cm ³].
Bandgap Width	4.5-4.8 [eV]
Thermal Conductivity	0.1-0.3 [W/cmK]
Resistivity	Doping-dependent
Dielectric Constant	10
Breakdown Field Strength	8 [MV/cm]


Substrate properties

Dopant	Mg (semi-insulating)
Doping Level	-
Orientation	(100)-Cz
Misorientation	4°
Thickness	0.5 mm
Size	5x5 mm ² , 10x10 mm ²

Epi-layer properties

Si (n-type)
5x10 ¹⁶ - 2x10 ¹⁹ cm ⁻³
4 nm - 4 µm

more information at: <u>www.ikz-berlin.de/en/</u> <u>offer/gallium-oxide</u>

Leibniz-Institut für Kristallzüchtung (IKZ) Max-Born-Str. 2 ◆ 12489 Berlin ◆ Germany www.ikz-berlin.de

Contact:

Dr. Maike Schröder galliumoxid-substrates@ikz-berlin.de